Day 7: Enhancing AI Memory for Multi-Turn Conversations #AIVoiceBot #ContextRetention

A powerful AI voice bot should remember previous interactions to provide a seamless, human-like conversation experience. Today, we’ll implement context retention in our Laravel AI call center, allowing the bot to track conversations across multiple turns.


🧠 1. Why Context Retention is Important

Without memory, AI chatbots treat each message as a separate conversation, leading to:
❌ Repetitive questions (e.g., “What’s your account number?”)
❌ Inconsistent responses (e.g., Forgetting previous details)
❌ Frustrated users

By storing previous queries, the AI can:
βœ… Maintain conversation flow (e.g., “Can I change my address?” β†’ “Yes, what’s your new address?”)
βœ… Remember user details (e.g., “My order number is 1234.” β†’ “I see, your order is being processed.”)
βœ… Provide personalized responses

πŸ”— More on AI chat memory: OpenAI Conversation History


πŸ› οΈ 2. Implementing Conversation Memory in Laravel

We’ll store conversation history in a Redis cache or database, allowing AI to reference past interactions.

πŸ“Œ Step 1: Install Laravel Redis

composer require predis/predis

πŸ“Œ Step 2: Configure Redis in .env

CACHE_DRIVER=redis
REDIS_HOST=127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT=6379

πŸ’Ύ 3. Storing & Retrieving Conversation History

Now, we create a ConversationMemoryService to track previous queries.

See also  Day 6: Handling Call Routing & Multi-Agent AI Conversations #AIVoiceBot #CallRouting

πŸ“Œ Step 1: Create Conversation Memory Service

namespace App\Services;

use Illuminate\Support\Facades\Redis;

class ConversationMemoryService
{
    public function storeMessage($sessionId, $message)
    {
        $history = Redis::get("conversation:$sessionId") ?? '[]';
        $history = json_decode($history, true);

        $history[] = ['timestamp' => now(), 'message' => $message];

        Redis::set("conversation:$sessionId", json_encode($history));
    }

    public function getConversationHistory($sessionId)
    {
        return json_decode(Redis::get("conversation:$sessionId") ?? '[]', true);
    }
}

πŸ€– 4. Enhancing AI Responses with Memory

We’ll modify AIService to include past interactions in its response generation.

πŸ“Œ Step 1: Modify AIService to Include Conversation Context

namespace App\Services;

use OpenAI;
use App\Services\ConversationMemoryService;

class AIService
{
    protected $client;
    protected $memory;

    public function __construct()
    {
        $this->client = OpenAI::factory()->withApiKey(env('OPENAI_API_KEY'))->make();
        $this->memory = new ConversationMemoryService();
    }

    public function generateResponse($sessionId, $query)
    {
        $history = $this->memory->getConversationHistory($sessionId);
        $context = implode("\n", array_column($history, 'message'));

        $response = $this->client->completions()->create([
            'model' => 'gpt-4',
            'prompt' => "Previous conversation:\n$context\nUser: $query\nAI:",
            'max_tokens' => 100,
        ]);

        $this->memory->storeMessage($sessionId, "User: $query\nAI: ".$response['choices'][0]['text']);

        return $response['choices'][0]['text'] ?? 'I couldn’t process your request.';
    }
}

πŸ“‘ 5. Using AI Memory in a Real Call Flow

Now, we update the call handling system to use AI memory.

πŸ“Œ Step 1: Modify handleCall() to Include Context

use App\Services\AIService;
use Illuminate\Http\Request;

public function handleCall(Request $request)
{
    $sessionId = $request->input('session_id');
    $query = $request->input('query');

    $ai = new AIService();
    $response = $ai->generateResponse($sessionId, $query);

    return response()->json(['reply' => $response]);
}

πŸ“‘ 6. Testing Multi-Turn AI Conversations

βœ… Step 1: Customer asks: “What’s my last order?”
βœ… Step 2: AI checks memory and responds: “Your last order was a smartwatch on Feb 12.”
βœ… Step 3: Customer follows up: “Can I cancel it?”
βœ… Step 4: AI references memory and replies: “Your order is already shipped, so it can’t be canceled.”

This seamless conversation improves customer experience!

πŸ”— More on AI conversation tracking: Google Dialogflow Context


πŸ“ Meta Description

“Enable AI memory in Laravel call center bots with Redis. Track conversations, improve AI responses, and create seamless multi-turn interactions! #AIVoiceBot #ContextRetention”

See also  Day 8: Integrating AI with CRM for Customer Data Access #AIVoiceBot #AIandCRM

πŸ’‘ Next: Day 8 – Integrating AI with CRM for Customer Data Access #AIVoiceBot #AIandCRM

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.