A powerful AI voice bot should remember previous interactions to provide a seamless, human-like conversation experience. Today, weβll implement context retention in our Laravel AI call center, allowing the bot to track conversations across multiple turns.
π§ 1. Why Context Retention is Important
Without memory, AI chatbots treat each message as a separate conversation, leading to:
β Repetitive questions (e.g., “Whatβs your account number?”)
β Inconsistent responses (e.g., Forgetting previous details)
β Frustrated users
By storing previous queries, the AI can:
β
Maintain conversation flow (e.g., “Can I change my address?” β “Yes, whatβs your new address?”)
β
Remember user details (e.g., “My order number is 1234.” β “I see, your order is being processed.”)
β
Provide personalized responses
π More on AI chat memory: OpenAI Conversation History
π οΈ 2. Implementing Conversation Memory in Laravel
Weβll store conversation history in a Redis cache or database, allowing AI to reference past interactions.
π Step 1: Install Laravel Redis
composer require predis/predis
π Step 2: Configure Redis in .env
CACHE_DRIVER=redis
REDIS_HOST=127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT=6379
πΎ 3. Storing & Retrieving Conversation History
Now, we create a ConversationMemoryService to track previous queries.
π Step 1: Create Conversation Memory Service
namespace App\Services;
use Illuminate\Support\Facades\Redis;
class ConversationMemoryService
{
public function storeMessage($sessionId, $message)
{
$history = Redis::get("conversation:$sessionId") ?? '[]';
$history = json_decode($history, true);
$history[] = ['timestamp' => now(), 'message' => $message];
Redis::set("conversation:$sessionId", json_encode($history));
}
public function getConversationHistory($sessionId)
{
return json_decode(Redis::get("conversation:$sessionId") ?? '[]', true);
}
}
π€ 4. Enhancing AI Responses with Memory
Weβll modify AIService to include past interactions in its response generation.
π Step 1: Modify AIService to Include Conversation Context
namespace App\Services;
use OpenAI;
use App\Services\ConversationMemoryService;
class AIService
{
protected $client;
protected $memory;
public function __construct()
{
$this->client = OpenAI::factory()->withApiKey(env('OPENAI_API_KEY'))->make();
$this->memory = new ConversationMemoryService();
}
public function generateResponse($sessionId, $query)
{
$history = $this->memory->getConversationHistory($sessionId);
$context = implode("\n", array_column($history, 'message'));
$response = $this->client->completions()->create([
'model' => 'gpt-4',
'prompt' => "Previous conversation:\n$context\nUser: $query\nAI:",
'max_tokens' => 100,
]);
$this->memory->storeMessage($sessionId, "User: $query\nAI: ".$response['choices'][0]['text']);
return $response['choices'][0]['text'] ?? 'I couldnβt process your request.';
}
}
π‘ 5. Using AI Memory in a Real Call Flow
Now, we update the call handling system to use AI memory.
π Step 1: Modify handleCall()
to Include Context
use App\Services\AIService;
use Illuminate\Http\Request;
public function handleCall(Request $request)
{
$sessionId = $request->input('session_id');
$query = $request->input('query');
$ai = new AIService();
$response = $ai->generateResponse($sessionId, $query);
return response()->json(['reply' => $response]);
}
π‘ 6. Testing Multi-Turn AI Conversations
β
Step 1: Customer asks: “Whatβs my last order?”
β
Step 2: AI checks memory and responds: “Your last order was a smartwatch on Feb 12.”
β
Step 3: Customer follows up: “Can I cancel it?”
β
Step 4: AI references memory and replies: “Your order is already shipped, so it can’t be canceled.”
This seamless conversation improves customer experience!
π More on AI conversation tracking: Google Dialogflow Context
π Meta Description
“Enable AI memory in Laravel call center bots with Redis. Track conversations, improve AI responses, and create seamless multi-turn interactions! #AIVoiceBot #ContextRetention”