Day 5: Handling Real-Time AI Conversations with Callers #AIVoiceBot #LiveAIChat

An AI-powered call center must handle dynamic conversations in real time, allowing the voice bot to process customer queries, fetch database information, and respond naturally. Today, weโ€™ll integrate live AI conversations using Laravel, WebSockets, and AI response processing.


๐Ÿ“ž 1. How AI Manages Real-Time Conversations

A live AI call center system follows these steps:

๐Ÿ”น Step 1: AI transcribes incoming speech via STT (Speech-to-Text).
๐Ÿ”น Step 2: AI processes the text to detect intent (e.g., order status inquiry).
๐Ÿ”น Step 3: AI fetches data from the database if needed.
๐Ÿ”น Step 4: AI generates a response using OpenAI/AWS Lex/Dialogflow.
๐Ÿ”น Step 5: AI converts the response into speech (TTS) and replies instantly.
๐Ÿ”น Step 6: If unresolved, AI escalates the call to a human agent.

๐Ÿ”— More about AI call automation: Google Dialogflow


๐Ÿ› ๏ธ 2. Setting Up Laravel WebSockets for Live AI Conversations

To process live conversations, we use Laravel WebSockets for real-time AI interactions.

See also  Day 2: Integrating AI-Powered Speech-to-Text for Call Handling #AIVoiceBot #STTIntegration

๐Ÿ“Œ Step 1: Install Laravel WebSockets

composer require beyondcode/laravel-websockets
php artisan vendor:publish --tag=websockets-config
php artisan migrate

๐Ÿ“Œ Step 2: Configure WebSocket Server

Modify .env:

PUSHER_APP_ID=local
PUSHER_APP_KEY=somekey
PUSHER_APP_SECRET=secret
PUSHER_APP_CLUSTER=mt1

Then update config/broadcasting.php:

'default' => env('BROADCAST_DRIVER', 'pusher'),

'pusher' => [
    'driver' => 'pusher',
    'key' => env('PUSHER_APP_KEY'),
    'secret' => env('PUSHER_APP_SECRET'),
    'app_id' => env('PUSHER_APP_ID'),
    'options' => [
        'cluster' => env('PUSHER_APP_CLUSTER'),
        'useTLS' => true,
    ],
],

Start the WebSocket server:

php artisan websockets:serve

๐Ÿ—ฃ๏ธ 3. Processing Live AI Conversations in Laravel

Now, we integrate STT (Speech-to-Text), AI intent detection, and TTS (Text-to-Speech) into the WebSocket flow.

๐Ÿ“Œ Step 1: Handle Incoming Voice Queries in WebSocket

use Ratchet\MessageComponentInterface;
use Ratchet\ConnectionInterface;
use App\Services\SpeechToTextService;
use App\Services\AIService;
use App\Services\TextToSpeechService;

class VoiceBotHandler implements MessageComponentInterface
{
    public function onMessage(ConnectionInterface $conn, $msg)
    {
        $stt = new SpeechToTextService();
        $query = $stt->transcribeAudio($msg);

        $ai = new AIService();
        $response = $ai->generateResponse($query);

        $tts = new TextToSpeechService();
        $audio = $tts->synthesizeSpeech($response);

        $conn->send(json_encode(['reply' => $response, 'audio' => $audio]));
    }
}

๐Ÿ“Œ Step 2: Send Real-Time AI Responses to Clients

Update the WebSocket route to process AI-generated replies in real time.

use BeyondCode\LaravelWebSockets\Facades\WebSocketsRouter;
use App\WebSockets\VoiceBotHandler;

WebSocketsRouter::webSocket('/voice-bot', VoiceBotHandler::class);

Now, whenever the bot receives an audio query, it:
โœ… Transcribes it using STT
โœ… Analyzes the request with AI
โœ… Generates a response
โœ… Converts the response to voice (TTS)
โœ… Sends it back via WebSockets


๐Ÿ“ก 4. Testing Live AI Call Conversations

๐Ÿ“Œ Step 1: Start the WebSocket Server

php artisan websockets:serve

๐Ÿ“Œ Step 2: Send a Sample Audio Query

Using Postman or a client WebSocket connection:

{
    "audio": "base64_encoded_audio_data"
}

The AI bot will reply with:

{
    "reply": "Your last order was delivered on March 5.",
    "audio": "base64_encoded_audio_response"
}

๐Ÿ“ข 5. Future Enhancements for Live AI Conversations

๐Ÿ”น Live Call Routing โ€“ Route users to different AI models based on intent.
๐Ÿ”น Context Retention โ€“ Make AI remember user details within a session.
๐Ÿ”น Multi-Language Support โ€“ Use Google TTS for dynamic language selection.
๐Ÿ”น Live Agent Escalation โ€“ AI can transfer calls to human agents.

See also  Day 10: Deploying & Scaling the AI Call Center System #AIVoiceBot #AIatScale

๐Ÿ”— More on WebSocket AI integration: Pusher WebSockets


๐Ÿ“ Meta Description

“Enable real-time AI conversations in a Laravel call center bot with WebSockets, OpenAI, and AWS. Automate voice queries and AI replies instantly! #AIVoiceBot #LiveAIChat”


๐Ÿ’ก Next: Day 6 – Handling Call Routing & Multi-Agent AI Conversations #AIVoiceBot #CallRouting

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.