An AI-powered call center must handle dynamic conversations in real time, allowing the voice bot to process customer queries, fetch database information, and respond naturally. Today, weโll integrate live AI conversations using Laravel, WebSockets, and AI response processing.
๐ 1. How AI Manages Real-Time Conversations
A live AI call center system follows these steps:
๐น Step 1: AI transcribes incoming speech via STT (Speech-to-Text).
๐น Step 2: AI processes the text to detect intent (e.g., order status inquiry).
๐น Step 3: AI fetches data from the database if needed.
๐น Step 4: AI generates a response using OpenAI/AWS Lex/Dialogflow.
๐น Step 5: AI converts the response into speech (TTS) and replies instantly.
๐น Step 6: If unresolved, AI escalates the call to a human agent.
๐ More about AI call automation: Google Dialogflow
๐ ๏ธ 2. Setting Up Laravel WebSockets for Live AI Conversations
To process live conversations, we use Laravel WebSockets for real-time AI interactions.
๐ Step 1: Install Laravel WebSockets
composer require beyondcode/laravel-websockets
php artisan vendor:publish --tag=websockets-config
php artisan migrate
๐ Step 2: Configure WebSocket Server
Modify .env
:
PUSHER_APP_ID=local
PUSHER_APP_KEY=somekey
PUSHER_APP_SECRET=secret
PUSHER_APP_CLUSTER=mt1
Then update config/broadcasting.php
:
'default' => env('BROADCAST_DRIVER', 'pusher'),
'pusher' => [
'driver' => 'pusher',
'key' => env('PUSHER_APP_KEY'),
'secret' => env('PUSHER_APP_SECRET'),
'app_id' => env('PUSHER_APP_ID'),
'options' => [
'cluster' => env('PUSHER_APP_CLUSTER'),
'useTLS' => true,
],
],
Start the WebSocket server:
php artisan websockets:serve
๐ฃ๏ธ 3. Processing Live AI Conversations in Laravel
Now, we integrate STT (Speech-to-Text), AI intent detection, and TTS (Text-to-Speech) into the WebSocket flow.
๐ Step 1: Handle Incoming Voice Queries in WebSocket
use Ratchet\MessageComponentInterface;
use Ratchet\ConnectionInterface;
use App\Services\SpeechToTextService;
use App\Services\AIService;
use App\Services\TextToSpeechService;
class VoiceBotHandler implements MessageComponentInterface
{
public function onMessage(ConnectionInterface $conn, $msg)
{
$stt = new SpeechToTextService();
$query = $stt->transcribeAudio($msg);
$ai = new AIService();
$response = $ai->generateResponse($query);
$tts = new TextToSpeechService();
$audio = $tts->synthesizeSpeech($response);
$conn->send(json_encode(['reply' => $response, 'audio' => $audio]));
}
}
๐ Step 2: Send Real-Time AI Responses to Clients
Update the WebSocket route to process AI-generated replies in real time.
use BeyondCode\LaravelWebSockets\Facades\WebSocketsRouter;
use App\WebSockets\VoiceBotHandler;
WebSocketsRouter::webSocket('/voice-bot', VoiceBotHandler::class);
Now, whenever the bot receives an audio query, it:
โ
Transcribes it using STT
โ
Analyzes the request with AI
โ
Generates a response
โ
Converts the response to voice (TTS)
โ
Sends it back via WebSockets
๐ก 4. Testing Live AI Call Conversations
๐ Step 1: Start the WebSocket Server
php artisan websockets:serve
๐ Step 2: Send a Sample Audio Query
Using Postman or a client WebSocket connection:
{
"audio": "base64_encoded_audio_data"
}
The AI bot will reply with:
{
"reply": "Your last order was delivered on March 5.",
"audio": "base64_encoded_audio_response"
}
๐ข 5. Future Enhancements for Live AI Conversations
๐น Live Call Routing โ Route users to different AI models based on intent.
๐น Context Retention โ Make AI remember user details within a session.
๐น Multi-Language Support โ Use Google TTS for dynamic language selection.
๐น Live Agent Escalation โ AI can transfer calls to human agents.
๐ More on WebSocket AI integration: Pusher WebSockets
๐ Meta Description
“Enable real-time AI conversations in a Laravel call center bot with WebSockets, OpenAI, and AWS. Automate voice queries and AI replies instantly! #AIVoiceBot #LiveAIChat”