Overview
Today, we’ll implement AI-driven workout analysis and form correction using real-time pose detection with TensorFlow.js or MediaPipe. The goal is to analyze the user’s movements, detect improper form, and provide voice-guided feedback to correct posture during workouts.
Step 1: Integrate Pose Detection Library
We will use TensorFlow.js with MoveNet or PoseNet for real-time body tracking.
1. Install Dependencies
If you haven’t installed TensorFlow.js yet, do so now:
npm install @tensorflow/tfjs @tensorflow-models/pose-detection @mediapipe/pose
2. Load the Pose Detection Model
Create a poseDetection.js
file and load the MoveNet Lightning model:
import * as posedetection from "@tensorflow-models/pose-detection";
import * as tf from "@tensorflow/tfjs";
let detector;
export const loadPoseDetector = async () => {
detector = await posedetection.createDetector(
posedetection.SupportedModels.MoveNet,
{ modelType: "Lightning" }
);
};
export const detectPose = async (videoElement) => {
if (!detector) return null;
return await detector.estimatePoses(videoElement, { flipHorizontal: false });
};
Step 2: Capture Live Camera Feed
Modify your React Native component to display a live camera feed and pass it to the pose detector.
1. Install Expo Camera
expo install expo-camera
2. Create the Camera Component
import { Camera } from 'expo-camera';
import { useRef, useEffect, useState } from 'react';
import { View, Button, Text } from 'react-native';
import { loadPoseDetector, detectPose } from './poseDetection';
export default function WorkoutAnalyzer() {
const cameraRef = useRef(null);
const [hasPermission, setHasPermission] = useState(null);
const [poseFeedback, setPoseFeedback] = useState("");
useEffect(() => {
(async () => {
const { status } = await Camera.requestPermissionsAsync();
setHasPermission(status === 'granted');
await loadPoseDetector();
})();
}, []);
const analyzePose = async () => {
if (!cameraRef.current) return;
const poseData = await detectPose(cameraRef.current);
if (poseData && poseData[0]) {
const leftKnee = poseData[0].keypoints.find(p => p.name === 'left_knee');
const rightKnee = poseData[0].keypoints.find(p => p.name === 'right_knee');
if (leftKnee.y < rightKnee.y + 10) {
setPoseFeedback("Good form! Keep going.");
} else {
setPoseFeedback("Correct your knee alignment!");
}
}
};
return (
<View>
<Camera ref={cameraRef} style={{ width: '100%', height: 400 }} />
<Button title="Analyze Pose" onPress={analyzePose} />
<Text>{poseFeedback}</Text>
</View>
);
}
Step 3: Voice Feedback for Form Correction
Since we already have voice output from Day 4, let’s trigger voice feedback when a posture issue is detected.
1. Install Expo Speech API
expo install expo-speech
2. Add Speech Feedback
Modify the analyzePose
function:
import * as Speech from 'expo-speech';
const analyzePose = async () => {
if (!cameraRef.current) return;
const poseData = await detectPose(cameraRef.current);
if (poseData && poseData[0]) {
const leftKnee = poseData[0].keypoints.find(p => p.name === 'left_knee');
const rightKnee = poseData[0].keypoints.find(p => p.name === 'right_knee');
if (leftKnee.y < rightKnee.y + 10) {
setPoseFeedback("Good form! Keep going.");
Speech.speak("Good form! Keep going.");
} else {
setPoseFeedback("Correct your knee alignment!");
Speech.speak("Correct your knee alignment.");
}
}
};
Final Result 🎯
- The camera captures the user’s workout in real-time.
- The pose detector analyzes form and posture.
- If form is incorrect, voice feedback guides the user.
What’s Next? 🔥
➡️ Day 6: Personalized Workout Recommendations with AI
We’ll implement customized workout plans based on user performance, fitness goals, and AI recommendations.