Day 2: Implementing Pose Detection for AI Workout Tracking #AIWorkout #PoseDetection

On Day 2, we’ll set up real-time pose detection using TensorFlow.js and PoseNet/BlazePose to track body movements during workouts.


1. Why Use AI Pose Detection for Workouts?

Tracks Exercise Form → AI detects body posture and gives real-time feedback.
Counts Reps Automatically → No need to manually count squats, push-ups, or lunges.
Detects Incorrect Movements → AI warns if form is incorrect to prevent injuries.
Works Without Wearables → Just a smartphone camera is enough!


2. Choosing a Pose Detection Model

  • PoseNet (Fast, Good for Basic Tracking)
  • BlazePose (More Advanced, Supports Angles & 33 Key Points)

For this tutorial, we’ll use BlazePose, as it provides better workout tracking.


3. Installing TensorFlow & Pose Detection

Run:

npm install @tensorflow/tfjs @tensorflow-models/pose-detection @tensorflow/tfjs-react-native expo-camera
expo install expo-gl

4. Setting Up Camera for Pose Detection

We’ll integrate Expo Camera to capture the user’s workout movements.

Step 1: Create WorkoutScreen.js

Inside src/screens/WorkoutScreen.js:

import React, { useRef, useState, useEffect } from 'react';
import { View, Text, Button, StyleSheet } from 'react-native';
import { Camera } from 'expo-camera';
import * as tf from '@tensorflow/tfjs';
import * as poseDetection from '@tensorflow-models/pose-detection';
import { cameraWithTensors } from '@tensorflow/tfjs-react-native';

const TensorCamera = cameraWithTensors(Camera);

export default function WorkoutScreen() {
    const [permission, setPermission] = useState(null);
    const [poseData, setPoseData] = useState(null);
    const cameraRef = useRef(null);
    let detector = null;

    useEffect(() => {
        (async () => {
            const { status } = await Camera.requestPermissionsAsync();
            setPermission(status === 'granted');
            await tf.ready();
            detector = await poseDetection.createDetector(poseDetection.SupportedModels.BlazePose);
        })();
    }, []);

    const handlePoseDetection = async (imageTensor) => {
        if (!detector) return;
        const poses = await detector.estimatePoses(imageTensor);
        if (poses.length > 0) {
            setPoseData(poses[0].keypoints);
        }
    };

    if (permission === null) return <Text>Requesting camera permission...</Text>;
    if (permission === false) return <Text>No access to camera</Text>;

    return (
        <View style={styles.container}>
            <TensorCamera
                ref={cameraRef}
                style={styles.camera}
                type={Camera.Constants.Type.front}
                onReady={handlePoseDetection}
                autorender={true}
            />
            {poseData && <Text>Pose Detected: {JSON.stringify(poseData)}</Text>}
        </View>
    );
}

const styles = StyleSheet.create({
    container: { flex: 1, justifyContent: 'center', alignItems: 'center' },
    camera: { width: '100%', height: '70%' },
});

5. Adding Workout Tracking to Navigation

Step 1: Update App.js

Modify App.js to add a workout screen:

import React from 'react';
import { NavigationContainer } from '@react-navigation/native';
import { createStackNavigator } from '@react-navigation/stack';
import HomeScreen from './src/screens/HomeScreen';
import WorkoutScreen from './src/screens/WorkoutScreen';

const Stack = createStackNavigator();

export default function App() {
    return (
        <NavigationContainer>
            <Stack.Navigator>
                <Stack.Screen name="Home" component={HomeScreen} />
                <Stack.Screen name="Workout" component={WorkoutScreen} />
            </Stack.Navigator>
        </NavigationContainer>
    );
}

Step 2: Add “Start Workout” Button in Home Screen

Modify HomeScreen.js:

<Button title="Start Workout" onPress={() => navigation.navigate('Workout')} />

6. Running the AI Pose Detection

Run:

npx expo start
  • Grant camera permission when prompted.
  • The camera detects body movement and displays pose keypoints.
See also  Day 5: AI-Driven Workout Analysis & Form Correction #AIWorkout #FormCorrection #PoseDetection

7. Preparing for Tomorrow: AI Rep Counting & Form Correction

Tomorrow, we’ll:

  • Track squats, push-ups, and lunges using pose angles.
  • Correct incorrect form using AI analysis.

8. Key Concepts Covered

Set up real-time camera-based pose detection.
Installed TensorFlow.js & BlazePose for AI tracking.
Integrated pose detection into the app.


9. Next Steps: AI Workout Rep Counting & Form Correction

Tomorrow, we’ll:

  • Use AI to count squats, push-ups, and lunges.
  • Detect incorrect workout form in real-time.

10. References & Learning Resources


11. SEO Keywords:

AI workout tracker, React Native pose detection, TensorFlow BlazePose app, AI fitness tracking, AI-powered personal trainer.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.