On Day 4, we’ll focus on extracting facial landmarks and aligning faces. These steps are crucial for ensuring that the face swapping process appears natural and realistic. By the end of this session, your app will be able to identify key facial features and align them for transformations.
1. What Is Facial Feature Extraction?
Facial feature extraction involves detecting key points on a face, such as eyes, nose, mouth, and jawline. These points, or landmarks, help:
- Align Faces: Ensure the source and target faces are positioned similarly.
- Warp Faces: Transform the source face to match the target face’s orientation.
Popular pre-trained models for feature extraction:
- Mediapipe Facemesh (TensorFlow.js): Detects 468 facial landmarks.
- Dlib: Provides robust facial landmark detection.
- OpenCV: Detects up to 68 facial landmarks.
2. Enhancing Face Detection with Landmarks
Step 1: Update the Model for Landmark Detection
Extend the code in FaceSwapScreen.js
to use a face landmark detection model:
import React, { useState, useEffect } from 'react';
import { View, Image, StyleSheet, ActivityIndicator } from 'react-native';
import * as tf from '@tensorflow/tfjs';
import * as faceLandmarksDetection from '@tensorflow-models/face-landmarks-detection';
export default function FaceSwapScreen({ route }) {
const { imageUri } = route.params;
const [model, setModel] = useState(null);
const [landmarks, setLandmarks] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
const loadModel = async () => {
await tf.ready();
const loadedModel = await faceLandmarksDetection.load(
faceLandmarksDetection.SupportedPackages.mediapipeFacemesh
);
setModel(loadedModel);
setLoading(false);
};
loadModel();
}, []);
useEffect(() => {
const detectLandmarks = async () => {
if (!model) return;
const img = document.createElement('img');
img.src = imageUri;
const predictions = await model.estimateFaces({
input: img,
returnTensors: false,
});
if (predictions.length > 0) {
console.log('Detected Landmarks:', predictions[0].scaledMesh);
setLandmarks(predictions[0].scaledMesh);
}
};
detectLandmarks();
}, [model]);
return (
<View style={styles.container}>
{loading ? (
<ActivityIndicator size="large" color="#0000ff" />
) : (
<Image source={{ uri: imageUri }} style={styles.image} />
)}
</View>
);
}
const styles = StyleSheet.create({
container: { flex: 1, justifyContent: 'center', alignItems: 'center' },
image: { width: 300, height: 400 },
});
3. Visualizing Facial Landmarks
Step 1: Add a Canvas Overlay
Use a Canvas
to draw detected landmarks over the face:
import Canvas from 'react-native-canvas';
const drawLandmarks = (canvas, landmarks) => {
const ctx = canvas.getContext('2d');
ctx.fillStyle = 'red';
landmarks.forEach(([x, y]) => {
ctx.beginPath();
ctx.arc(x, y, 2, 0, 2 * Math.PI);
ctx.fill();
});
};
<Canvas
ref={(canvas) => {
if (canvas && landmarks.length > 0) {
drawLandmarks(canvas, landmarks);
}
}}
/>;
4. Aligning Faces for Swapping
Step 1: Perform Affine Transformation
Align the source face to the target face using three key points:
- Left Eye
- Right Eye
- Nose
Example using OpenCV (if installed):
const alignFaces = (sourceLandmarks, targetLandmarks) => {
const srcTri = [
sourceLandmarks[33], // Left eye
sourceLandmarks[263], // Right eye
sourceLandmarks[1], // Nose
];
const tgtTri = [
targetLandmarks[33], // Left eye
targetLandmarks[263], // Right eye
targetLandmarks[1], // Nose
];
const warpMatrix = cv.getAffineTransform(srcTri, tgtTri);
// Apply warp to the source image
const alignedFace = cv.warpAffine(sourceImage, warpMatrix, targetImageSize);
return alignedFace;
};
5. Testing the Facial Feature Extraction
Step 1: Run the App
Start your development server:
expo start
Step 2: Test with Sample Images
- Upload images with clear faces.
- Verify the detected landmarks are accurate.
- Check if the alignment matches key features like eyes and nose.
6. Key Considerations
- Face Orientation: Ensure the app handles rotated or tilted faces correctly.
- Landmark Quality: Some models work better with high-resolution images.
- Performance Optimization: Process only a single face per image if needed to improve speed.
7. Key Concepts Covered
- Facial landmark detection using TensorFlow.js.
- Visualizing landmarks with a canvas overlay.
- Aligning faces for transformations using affine transformations.
Next Steps
On Day 5, we’ll:
- Apply transformations and warping techniques for face swapping.
- Learn how to blend the swapped face seamlessly into the target.
References and Links:
- TensorFlow.js Face Landmarks Detection
- OpenCV Affine Transform Documentation
- React Native Canvas Documentation
SEO Keywords: facial landmark detection tutorial, face alignment in React Native, TensorFlow.js face mesh, affine transformation for face swapping, building deepfake apps.