Day 1 – Setting Up the Predictive Sales Forecasting System#SalesForecastAI #LaravelML #PredictiveAnalytics #SalesPrediction


In this tutorial series, we’ll build a Predictive Sales Forecasting System using Laravel and AI. The goal is to forecast sales trends using real data and visualize predictions with confidence intervals.


🧰 Step 1: Create a fresh Laravel project

composer create-project laravel/laravel sales-forecast-ai
cd sales-forecast-ai

🧪 Step 2: Set up database

Edit .env:

DB_DATABASE=sales_forecast
DB_USERNAME=root
DB_PASSWORD=

Create database in MySQL:

CREATE DATABASE sales_forecast;

📦 Step 3: Create the sales table

php artisan make:model Sale -m

In database/migrations/xxxx_create_sales_table.php:

public function up(): void
{
    Schema::create('sales', function (Blueprint $table) {
        $table->id();
        $table->string('product_name');
        $table->date('sale_date');
        $table->decimal('amount', 10, 2);
        $table->timestamps();
    });
}

Run the migration:

php artisan migrate

🧾 Step 4: Add sample sales seed data

php artisan make:seeder SaleSeeder

In database/seeders/SaleSeeder.php:

use App\Models\Sale;
use Illuminate\Support\Carbon;

public function run(): void
{
    foreach (range(1, 365) as $i) {
        Sale::create([
            'product_name' => 'Product A',
            'sale_date' => Carbon::now()->subDays(365 - $i),
            'amount' => rand(80, 200),
        ]);
    }
}

Register in DatabaseSeeder.php:

$this->call(SaleSeeder::class);

Seed the database:

php artisan db:seed

🧠 Step 5: Install Laravel Excel (for import/export later)

composer require maatwebsite/excel

✅ Up next (Day 2): we’ll build a simple sales trend chart and prepare the data for AI prediction.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.