AI-Powered Laravel Debugger & Error Handling #Laravel #PHP #AIDebugging

Day 9: Feedback System for AI Suggestions to Improve Accuracy

In Day 8, we built a revision history tracker for AI debugging logs. Today, we’ll add a feedback system so developers can rate AI suggestions as “Helpful” or “Not Helpful”. This enables us to improve the AI prompt quality and monitor AI performance.


Step 1: Add Feedback Columns to Logs Table

Run:

php artisan make:migration add_feedback_to_ai_debug_logs_table

In the generated migration file:

public function up()
{
    Schema::table('a_i_debug_logs', function (Blueprint $table) {
        $table->boolean('feedback_helpful')->nullable()->after('category');
        $table->timestamp('feedback_at')->nullable();
    });
}

Run the migration:

php artisan migrate

Step 2: Create Feedback Routes

In routes/web.php:

Route::post('/ai-debugger/{log}/feedback', [AIDebugLogController::class, 'feedback'])->name('ai-debugger.feedback');

Step 3: Add Feedback Form to Dashboard Table

In resources/views/ai-debugger/index.blade.php, add a new column:

<th>Feedback</th>

And inside the row:

<td>
    @if ($log->feedback_helpful !== null)
        <span class="badge bg-{{ $log->feedback_helpful ? 'success' : 'danger' }}">
            {{ $log->feedback_helpful ? 'Helpful' : 'Not Helpful' }}
        </span>
    @else
        <form action="{{ route('ai-debugger.feedback', $log->id) }}" method="POST" class="d-inline">
            @csrf
            <input type="hidden" name="feedback" value="1">
            <button type="submit" class="btn btn-sm btn-outline-success">๐Ÿ‘</button>
        </form>
        <form action="{{ route('ai-debugger.feedback', $log->id) }}" method="POST" class="d-inline">
            @csrf
            <input type="hidden" name="feedback" value="0">
            <button type="submit" class="btn btn-sm btn-outline-danger">๐Ÿ‘Ž</button>
        </form>
    @endif
</td>

Step 4: Add Feedback Logic in Controller

In AIDebugLogController.php:

public function feedback(Request $request, AIDebugLog $log)
{
    $request->validate([
        'feedback' => 'required|in:0,1'
    ]);

    $log->update([
        'feedback_helpful' => $request->input('feedback'),
        'feedback_at' => now(),
    ]);

    return redirect()->back()->with('success', 'Feedback recorded.');
}

Step 5: Add Feedback Summary Stats (Optional)

Above the table in the view, you can show:

@php
    $total = \App\Models\AIDebugLog::count();
    $positive = \App\Models\AIDebugLog::where('feedback_helpful', true)->count();
    $negative = \App\Models\AIDebugLog::where('feedback_helpful', false)->count();
@endphp

<div class="mb-3">
    <strong>Total Logs:</strong> {{ $total }} |
    <strong>Helpful:</strong> {{ $positive }} |
    <strong>Not Helpful:</strong> {{ $negative }}
</div>

Step 6: Test Feedback Flow

  1. Visit /ai-debugger.
  2. Click ๐Ÿ‘ or ๐Ÿ‘Ž on any AI suggestion.
  3. See feedback saved and badges rendered.
  4. Try submitting multiple โ€” only one feedback allowed per log.
See also  Using Laravel for Bitcoin Mining: An Unconventional Approach

Next Steps

In Day 10, weโ€™ll wrap up with a production-ready cleanup, add exporting, and outline how to extend this AI debugger into a team-wide error intelligence system.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.