Day 6: Adding Interactive Gestures & Hand Controls #GestureControl #AIAvatars

On Day 6, we’ll introduce gesture recognition into our AI-powered avatar app. This will allow users to wave to start a conversation, raise a hand to stop, or thumbs-up to confirm—making the experience even more natural and hands-free.


1. Why Add Gesture Control?

Hands-Free Interaction – Users can control the avatar using simple hand signals.
Enhanced User Experience – More intuitive than tapping buttons, especially in AI assistant apps.
Combining Voice + Gesture – Builds a multi-modal AI system, improving accessibility.

We’ll use: 🔹 MediaPipe Hands API – For real-time hand tracking and gesture detection.
🔹 TensorFlow.js – To process hand landmarks for gestures.
🔹 React Three Fiber – To animate avatar reactions based on hand signals.


2. Installing Hand Tracking Dependencies

Step 1: Install TensorFlow.js & MediaPipe Hands

npm install @tensorflow/tfjs @tensorflow-models/handpose

Step 2: Install Expo Camera for Hand Detection

expo install expo-camera

3. Setting Up Gesture Detection

Step 1: Create GestureDetector.js

import React, { useState, useEffect } from 'react';
import { View, Text, StyleSheet } from 'react-native';
import { Camera } from 'expo-camera';
import * as tf from '@tensorflow/tfjs';
import * as handpose from '@tensorflow-models/handpose';

export default function GestureDetector({ onGestureRecognized }) {
    const [hasPermission, setHasPermission] = useState(null);
    const [gesture, setGesture] = useState('None');

    useEffect(() => {
        (async () => {
            const { status } = await Camera.requestPermissionsAsync();
            setHasPermission(status === 'granted');
            await tf.ready();
        })();
    }, []);

    useEffect(() => {
        let model;
        const loadModel = async () => {
            model = await handpose.load();
        };
        loadModel();

        const detectGesture = async (camera) => {
            if (!model) return;
            const predictions = await model.estimateHands(camera);

            if (predictions.length > 0) {
                const landmarks = predictions[0].landmarks;

                const thumbTip = landmarks[4];
                const indexTip = landmarks[8];
                const palmBase = landmarks[0];

                const thumbUp = thumbTip[1] < indexTip[1] && thumbTip[1] < palmBase[1];
                const wavingHand = Math.abs(thumbTip[0] - palmBase[0]) > 80; // Horizontal spread

                if (thumbUp) {
                    setGesture('Thumbs Up');
                    onGestureRecognized('thumbs_up');
                } else if (wavingHand) {
                    setGesture('Waving');
                    onGestureRecognized('wave');
                } else {
                    setGesture('None');
                }
            } else {
                setGesture('None');
            }

            requestAnimationFrame(() => detectGesture(camera));
        };

        return () => clearInterval(detectGesture);
    }, []);

    if (hasPermission === null) return <View />;
    if (hasPermission === false) return <Text>No access to camera</Text>;

    return (
        <View style={styles.container}>
            <Text style={styles.text}>Detected Gesture: {gesture}</Text>
        </View>
    );
}

const styles = StyleSheet.create({
    container: { padding: 10 },
    text: { fontSize: 16 },
});

4. Integrating Gesture Control with the Avatar

Modify AvatarRenderer.js to respond to gestures:

import React, { useState } from 'react';
import { Canvas } from '@react-three/fiber';
import AvatarAnimation from './AvatarAnimation';
import GestureDetector from './GestureDetector';

export default function AvatarRenderer() {
    const [gesture, setGesture] = useState('neutral');

    const handleGestureRecognized = (detectedGesture) => {
        if (detectedGesture === 'thumbs_up') setGesture('happy');
        if (detectedGesture === 'wave') setGesture('waving');
    };

    return (
        <>
            <GestureDetector onGestureRecognized={handleGestureRecognized} />
            <Canvas>
                <ambientLight intensity={0.5} />
                <directionalLight position={[0, 5, 5]} intensity={1} />
                <AvatarAnimation emotion={gesture} />
            </Canvas>
        </>
    );
}

5. Expanding Gesture-Based Commands

Wave Gesture → Start Interaction

  • When the user waves, the assistant greets them.
See also  Day 6: Adding Avatar Customization Options #AvatarCustomization #AIAvatars

Thumbs-Up Gesture → Confirm Action

  • When the user gives a thumbs up, the assistant confirms their request.

Palm Raise → Stop Interaction

  • Future: Raise hand → Stop speaking.

Modify ChatBot.js:

const [gestureInput, setGestureInput] = useState('');

const handleGestureCommand = (gesture) => {
    if (gesture === 'wave') {
        setGestureInput('Hello!');
    } else if (gesture === 'thumbs_up') {
        setGestureInput('Yes, confirm that!');
    }
};

<GestureDetector onGestureRecognized={handleGestureCommand} />;

6. Testing Gesture-Based Control

Step 1: Start the App

expo start

Step 2: Try These Gestures

GestureExpected Avatar ResponseExpected Chatbot Behavior
WaveAvatar wavesBot: “Hello! How can I help?”
Thumbs UpAvatar nods/smilesBot: “Got it! Confirmed.”
NeutralAvatar idleBot: Does nothing

7. Improving Hand Gesture Recognition

Adjust Sensitivity

  • Fine-tune landmark distances based on testing:
const wavingThreshold = 60; // Adjust based on your hand-camera distance

Track Hand Confidence Scores

  • Use confidence to reduce false positives:
if (predictions[0].handInViewConfidence > 0.9) { /* Accept gesture */ }

Add More Gestures

  • Victory Sign (Peace)“Good job!”
  • Raised Palm“Stop talking.”
  • Fist“Pause conversation.”

8. Key Concepts Covered

✅ Integrated hand gesture recognition using MediaPipe Hands API.
✅ Linked gestures to avatar animations like waving & nodding.
✅ Triggered chatbot commands using hand signals.


9. Next Steps: Personalizing Avatar Responses

Tomorrow, we’ll:
🔹 Customize chatbot replies based on user preferences.
🔹 Enable the avatar to remember names, greetings, or moods.


10. References & Learning Resources


11. SEO Keywords:

React Native hand tracking, AI avatars with gesture control, MediaPipe hand detection, TensorFlow.js handpose model, building voice + gesture-controlled assistants.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.