On Day 3, we’ll extract key facial landmarks (eyes, nose, mouth, jaw) and prepare them for mapping onto a 3D avatar. This step is crucial for ensuring that the avatar mimics real-time facial movements.
1. Understanding Facial Landmarks
Facial landmarks are specific points detected on a person’s face. MediaPipe Face Mesh detects 468 key points, but for avatars, we primarily focus on:
✅ Eyes (blinking, looking directions)
✅ Eyebrows (raising, lowering)
✅ Mouth (opening, smiling, speaking)
✅ Jaw & Head Movements (tilting, nodding)
Each landmark is represented as an (x, y, z) coordinate.
2. Extracting Facial Landmarks Using MediaPipe Face Mesh
Step 1: Modify CameraScreen.js
to Capture Face Mesh Data
import React, { useState, useEffect } from 'react';
import { View, StyleSheet, Text } from 'react-native';
import { Camera } from 'expo-camera';
import * as tf from '@tensorflow/tfjs';
import * as faceLandmarksDetection from '@tensorflow-models/face-landmarks-detection';
export default function CameraScreen() {
const [hasPermission, setHasPermission] = useState(null);
const [model, setModel] = useState(null);
const [landmarks, setLandmarks] = useState([]);
useEffect(() => {
(async () => {
const { status } = await Camera.requestPermissionsAsync();
setHasPermission(status === 'granted');
})();
}, []);
useEffect(() => {
const loadModel = async () => {
await tf.ready();
const loadedModel = await faceLandmarksDetection.load(
faceLandmarksDetection.SupportedPackages.mediapipeFacemesh
);
setModel(loadedModel);
};
loadModel();
}, []);
const detectFace = async (image) => {
if (!model) return;
const predictions = await model.estimateFaces({
input: image,
returnTensors: false,
flipHorizontal: false,
});
if (predictions.length > 0) {
console.log('Landmarks:', predictions[0].scaledMesh);
setLandmarks(predictions[0].scaledMesh);
}
};
if (hasPermission === null) {
return <View />;
}
if (hasPermission === false) {
return <Text>No access to camera</Text>;
}
return (
<View style={styles.container}>
<Camera style={styles.camera} type={Camera.Constants.Type.front} />
<Text style={styles.text}>Face Detected: {landmarks.length > 0 ? 'Yes' : 'No'}</Text>
</View>
);
}
const styles = StyleSheet.create({
container: { flex: 1, justifyContent: 'center', alignItems: 'center' },
camera: { flex: 1 },
text: { position: 'absolute', top: 50, fontSize: 18, fontWeight: 'bold' },
});
3. Extracting Key Facial Landmarks for Avatar Mapping
MediaPipe Face Mesh provides 468 landmarks, but we only need key points:
Feature | Landmark Index |
---|---|
Left Eye | 33 |
Right Eye | 263 |
Nose Tip | 1 |
Mouth Left Corner | 61 |
Mouth Right Corner | 291 |
Jaw Bottom | 199 |
Step 1: Extract Only Key Points
Modify detectFace
to extract only essential points:
const getKeyLandmarks = (landmarks) => {
return {
leftEye: landmarks[33],
rightEye: landmarks[263],
nose: landmarks[1],
mouthLeft: landmarks[61],
mouthRight: landmarks[291],
jawBottom: landmarks[199],
};
};
const detectFace = async (image) => {
if (!model) return;
const predictions = await model.estimateFaces({ input: image });
if (predictions.length > 0) {
const keyLandmarks = getKeyLandmarks(predictions[0].scaledMesh);
console.log('Key Landmarks:', keyLandmarks);
setLandmarks(keyLandmarks);
}
};
4. Mapping Face Landmarks to Avatar Movement
Step 1: Normalize the Landmark Positions
Since different faces have different sizes, normalize the coordinates:
const normalizeLandmarks = (landmarks, width, height) => {
return {
leftEye: [landmarks.leftEye[0] / width, landmarks.leftEye[1] / height],
rightEye: [landmarks.rightEye[0] / width, landmarks.rightEye[1] / height],
nose: [landmarks.nose[0] / width, landmarks.nose[1] / height],
mouthLeft: [landmarks.mouthLeft[0] / width, landmarks.mouthLeft[1] / height],
mouthRight: [landmarks.mouthRight[0] / width, landmarks.mouthRight[1] / height],
jawBottom: [landmarks.jawBottom[0] / width, landmarks.jawBottom[1] / height],
};
};
Step 2: Convert Landmarks to Avatar-Friendly Data
We’ll map facial movements to avatar expressions:
- Eye Blinking → Detect distance between upper and lower eyelid.
- Mouth Movement → Check distance between mouth corners.
- Head Tilting → Compare left and right eye height.
const detectExpressions = (landmarks) => {
const eyeDistance = Math.abs(landmarks.leftEye[1] - landmarks.rightEye[1]);
const mouthWidth = Math.abs(landmarks.mouthLeft[0] - landmarks.mouthRight[0]);
return {
isBlinking: eyeDistance < 0.02,
isSmiling: mouthWidth > 0.1,
};
};
5. Testing Facial Landmark Extraction
Step 1: Run the App
expo start
Step 2: Verify the Landmark Detection
- Open the console to see extracted landmarks.
- Check if eye blinking and mouth movement are detected.
6. Optimizing Performance
- Reduce FPS to 30 FPS for better performance:
if (frameCount % 2 === 0) detectFace(frame);
- Use GPU Acceleration for faster computations:
tf.setBackend('webgl');
7. Key Concepts Covered
✅ Extracted facial landmarks for avatar tracking.
✅ Normalized data for consistent avatar movements.
✅ Detected expressions like blinking & smiling.
8. Next Steps: Mapping Facial Features to a 3D Avatar
Tomorrow, we’ll: 🔹 Render 3D avatars using Three.js or Babylon.js.
🔹 Sync real-time face tracking with avatar movement.
9. References & Learning Resources
10. SEO Keywords:
Real-time AI avatar, face tracking with MediaPipe, facial landmark detection React Native, building an AI VTuber app, mapping facial expressions to avatars.