On Day 5, we’ll focus on applying transformations and warping techniques to map the source face onto the target face. This involves using affine transformations and image blending to ensure the swapped face aligns seamlessly.
1. What Is Face Warping?
Key Concepts
- Affine Transformation: Maps the source face to align with the target face using key points like eyes and nose.
- Image Warping: Adjusts the shape and size of the source face to match the target face’s geometry.
- Blending: Merges the transformed source face into the target image for a natural appearance.
2. Using Affine Transformations for Face Alignment
Step 1: Define Key Points for Transformation
Identify three key facial landmarks:
- Left Eye
- Right Eye
- Nose
For example, with TensorFlow.js landmarks:
const getKeyPoints = (landmarks) => {
return [
landmarks[33], // Left eye
landmarks[263], // Right eye
landmarks[1], // Nose
];
};
Step 2: Calculate Affine Transformation Matrix
Use OpenCV (or equivalent) to calculate the transformation matrix:
const calculateAffineTransform = (srcPoints, tgtPoints) => {
const warpMatrix = cv.getAffineTransform(srcPoints, tgtPoints);
return warpMatrix;
};
3. Performing Image Warping
Step 1: Apply the Transformation
Warp the source face to align with the target face:
const warpImage = (sourceImage, warpMatrix, targetSize) => {
const warpedImage = cv.warpAffine(sourceImage, warpMatrix, targetSize, {
flags: cv.INTER_LINEAR,
});
return warpedImage;
};
Step 2: Handle Boundary Conditions
Ensure the warped face fits perfectly within the target face boundary:
- Crop or mask areas outside the face region.
- Use the bounding box from the face detection step.
4. Blending the Swapped Face
Step 1: Create a Seamless Blend
Use alpha blending to combine the warped face with the target image:
const blendImages = (warpedFace, targetImage, mask) => {
const blendedImage = new cv.Mat();
cv.seamlessClone(
warpedFace,
targetImage,
mask,
new cv.Point(targetImage.cols / 2, targetImage.rows / 2),
blendedImage,
cv.NORMAL_CLONE
);
return blendedImage;
};
Step 2: Generate a Mask
Create a mask for the warped face:
const createFaceMask = (landmarks) => {
const mask = new cv.Mat.zeros(image.rows, image.cols, cv.CV_8UC1);
const faceHull = new cv.MatVector();
const points = landmarks.map(([x, y]) => new cv.Point(x, y));
cv.convexHull(points, faceHull);
cv.fillConvexPoly(mask, faceHull, [255, 255, 255]);
return mask;
};
5. Integrating the Logic into the App
Step 1: Update the FaceSwap Screen
Add the transformation and blending logic to FaceSwapScreen.js
:
import React, { useState, useEffect } from 'react';
import { View, Image, StyleSheet, ActivityIndicator } from 'react-native';
import * as tf from '@tensorflow/tfjs';
import * as faceLandmarksDetection from '@tensorflow-models/face-landmarks-detection';
import Canvas from 'react-native-canvas';
export default function FaceSwapScreen({ route }) {
const { imageUri } = route.params;
const [model, setModel] = useState(null);
const [loading, setLoading] = useState(true);
useEffect(() => {
const loadModel = async () => {
await tf.ready();
const loadedModel = await faceLandmarksDetection.load(
faceLandmarksDetection.SupportedPackages.mediapipeFacemesh
);
setModel(loadedModel);
setLoading(false);
};
const performFaceSwap = async () => {
const img = document.createElement('img');
img.src = imageUri;
const predictions = await model.estimateFaces({ input: img });
if (predictions.length > 0) {
const srcKeyPoints = getKeyPoints(predictions[0].scaledMesh);
const tgtKeyPoints = /* Target face key points */;
const warpMatrix = calculateAffineTransform(srcKeyPoints, tgtKeyPoints);
const warpedFace = warpImage(img, warpMatrix, targetImageSize);
const mask = createFaceMask(tgtKeyPoints);
const result = blendImages(warpedFace, img, mask);
console.log("Face swap complete");
// Display the result
}
};
if (model) {
performFaceSwap();
}
}, [model]);
return (
<View style={styles.container}>
{loading ? (
<ActivityIndicator size="large" color="#0000ff" />
) : (
<Image source={{ uri: imageUri }} style={styles.image} />
)}
</View>
);
}
const styles = StyleSheet.create({
container: { flex: 1, justifyContent: 'center', alignItems: 'center' },
image: { width: 300, height: 400 },
});
6. Testing the Transformations
Step 1: Run the App
Start the development server:
expo start
Step 2: Test the Face Swapping
- Upload an image with a clear face.
- Verify the face is warped and aligned correctly with the target face.
- Check if blending produces a seamless result.
7. Key Considerations
- Performance Optimization: Use downscaled images during processing for faster performance.
- Edge Cases: Handle images with multiple faces or poorly aligned faces.
- Blending Artifacts: Experiment with different blending methods for better results.
8. Key Concepts Covered
- Affine transformations for face alignment.
- Image warping and blending techniques.
- Combining all elements for basic face swapping functionality.
Next Steps
On Day 6, we’ll:
- Extend the app for real-time face swapping using the device camera.
- Optimize processing speed for smooth, live results.
References and Links
SEO Keywords: face swapping tutorial, image warping for deepfake apps, affine transformation in TensorFlow.js, building mobile deepfake apps, face blending techniques.