Welcome to Day 6! Today, you’ll take your app to the next level by adding real-time processing capabilities. This means running machine learning models on live camera feeds to detect objects, faces, or other features in real time.
What You’ll Learn Today
- Integrate real-time camera feeds.
- Use TensorFlow.js for live processing.
- Process video frames in real time with Core ML.
- Optimize for performance to handle real-time data.
Step 1: Set Up Live Camera Feed
1. Install Required Libraries
- Ensure you’ve installed
react-native-vision-camera
:npm install react-native-vision-camera npx pod-install
Step 2: Capture and Process Frames in TensorFlow.js
1. Modify the Camera Component for Frame Capture
Update CameraScreen.js
to process frames in real time:
import React, { useState, useEffect, useRef } from 'react';
import { View, StyleSheet, Text } from 'react-native';
import { Camera, useCameraDevices } from 'react-native-vision-camera';
import { useFrameProcessor } from 'react-native-vision-camera';
import { runOnJS } from 'react-native-reanimated';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-react-native';
import * as cocoSsd from '@tensorflow-models/coco-ssd';
let model;
const CameraScreen = () => {
const [predictions, setPredictions] = useState([]);
const devices = useCameraDevices();
const device = devices.back;
useEffect(() => {
const loadModel = async () => {
await tf.ready();
model = await cocoSsd.load();
console.log('Coco SSD model loaded!');
};
loadModel();
}, []);
const frameProcessor = useFrameProcessor((frame) => {
'worklet';
if (model) {
const tensor = tf.image.decodeJpeg(frame.data);
model.detect(tensor).then((results) => {
runOnJS(setPredictions)(results);
});
}
}, []);
if (!device) return null;
return (
<View style={styles.container}>
<Camera
style={StyleSheet.absoluteFill}
device={device}
isActive={true}
frameProcessor={frameProcessor}
frameProcessorFps={5}
/>
<View style={styles.overlay}>
{predictions.map((p, index) => (
<Text key={index} style={styles.prediction}>
{p.class}: {Math.round(p.score * 100)}%
</Text>
))}
</View>
</View>
);
};
const styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
},
overlay: {
position: 'absolute',
top: 20,
left: 20,
},
prediction: {
fontSize: 16,
color: 'white',
marginVertical: 5,
},
});
export default CameraScreen;
2. Run the App
npx react-native run-android
npx react-native run-ios
- The app will now display live predictions on camera feed in real time.
Step 3: Process Video Frames in Core ML
1. Integrate Vision Framework for Live Video
Open ViewController.swift
:
import UIKit
import AVFoundation
import Vision
class ViewController: UIViewController, AVCaptureVideoDataOutputSampleBufferDelegate {
var captureSession: AVCaptureSession!
var videoPreviewLayer: AVCaptureVideoPreviewLayer!
let model = try? VNCoreMLModel(for: YOLOv3Tiny().model)
override func viewDidLoad() {
super.viewDidLoad()
setupCamera()
}
func setupCamera() {
captureSession = AVCaptureSession()
captureSession.sessionPreset = .high
guard let videoCaptureDevice = AVCaptureDevice.default(for: .video) else { return }
let videoInput = try? AVCaptureDeviceInput(device: videoCaptureDevice)
if captureSession.canAddInput(videoInput!) {
captureSession.addInput(videoInput!)
}
let videoOutput = AVCaptureVideoDataOutput()
videoOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "videoQueue"))
if captureSession.canAddOutput(videoOutput) {
captureSession.addOutput(videoOutput)
}
videoPreviewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
videoPreviewLayer.videoGravity = .resizeAspectFill
videoPreviewLayer.frame = view.layer.bounds
view.layer.addSublayer(videoPreviewLayer)
captureSession.startRunning()
}
func captureOutput(
_ output: AVCaptureOutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection
) {
guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
guard let model = model else { return }
let request = VNCoreMLRequest(model: model) { (request, error) in
if let results = request.results as? [VNRecognizedObjectObservation] {
DispatchQueue.main.async {
for result in results {
print("Object detected: \(result.labels.first?.identifier ?? "Unknown")")
}
}
}
}
let handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:])
try? handler.perform([request])
}
}
2. Run the App
- Connect your iOS device or simulator.
- The app will display real-time object detection logs in the Xcode console.
Step 4: Optimize for Performance
- Reduce Frame Processing Rate:
- Limit the frames processed per second (FPS) to avoid performance bottlenecks.
- Use Accelerated Backends:
- For TensorFlow.js, enable WebGL backend for faster computations:
import * as tf from '@tensorflow/tfjs'; tf.setBackend('webgl');
- For TensorFlow.js, enable WebGL backend for faster computations:
- Batch Processing:
- Process frames in batches for higher efficiency.
- Model Optimization:
- Use quantized models (e.g., MobileNet or YOLO Tiny) for faster inference.
SEO Optimization for This Tutorial
Keywords: Real-time ML processing, TensorFlow.js live camera feed, Core ML video analysis, React Native real-time object detection, Vision Framework real-time ML.
Meta Description: Learn how to add real-time processing capabilities to your mobile app with TensorFlow.js and Core ML. Step-by-step tutorial with live camera integration and frame analysis.
Summary
Today, you added real-time processing capabilities to your app. By processing video frames in real time, you’ve created the foundation for live object detection, face recognition, or augmented reality features.
What’s Next: Tomorrow, you’ll explore sentiment analysis using pre-trained NLP models.
Stay tuned for Day 7: Running Sentiment Analysis on Text.