Day 6: Adding Real-Time Processing Capabilities


Welcome to Day 6! Today, you’ll take your app to the next level by adding real-time processing capabilities. This means running machine learning models on live camera feeds to detect objects, faces, or other features in real time.


What You’ll Learn Today

  1. Integrate real-time camera feeds.
  2. Use TensorFlow.js for live processing.
  3. Process video frames in real time with Core ML.
  4. Optimize for performance to handle real-time data.

Step 1: Set Up Live Camera Feed

1. Install Required Libraries

  • Ensure you’ve installed react-native-vision-camera: npm install react-native-vision-camera npx pod-install

Step 2: Capture and Process Frames in TensorFlow.js

1. Modify the Camera Component for Frame Capture

Update CameraScreen.js to process frames in real time:

import React, { useState, useEffect, useRef } from 'react';
import { View, StyleSheet, Text } from 'react-native';
import { Camera, useCameraDevices } from 'react-native-vision-camera';
import { useFrameProcessor } from 'react-native-vision-camera';
import { runOnJS } from 'react-native-reanimated';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-react-native';
import * as cocoSsd from '@tensorflow-models/coco-ssd';

let model;

const CameraScreen = () => {
  const [predictions, setPredictions] = useState([]);
  const devices = useCameraDevices();
  const device = devices.back;

  useEffect(() => {
    const loadModel = async () => {
      await tf.ready();
      model = await cocoSsd.load();
      console.log('Coco SSD model loaded!');
    };
    loadModel();
  }, []);

  const frameProcessor = useFrameProcessor((frame) => {
    'worklet';
    if (model) {
      const tensor = tf.image.decodeJpeg(frame.data);
      model.detect(tensor).then((results) => {
        runOnJS(setPredictions)(results);
      });
    }
  }, []);

  if (!device) return null;

  return (
    <View style={styles.container}>
      <Camera
        style={StyleSheet.absoluteFill}
        device={device}
        isActive={true}
        frameProcessor={frameProcessor}
        frameProcessorFps={5}
      />
      <View style={styles.overlay}>
        {predictions.map((p, index) => (
          <Text key={index} style={styles.prediction}>
            {p.class}: {Math.round(p.score * 100)}%
          </Text>
        ))}
      </View>
    </View>
  );
};

const styles = StyleSheet.create({
  container: {
    flex: 1,
    justifyContent: 'center',
    alignItems: 'center',
  },
  overlay: {
    position: 'absolute',
    top: 20,
    left: 20,
  },
  prediction: {
    fontSize: 16,
    color: 'white',
    marginVertical: 5,
  },
});

export default CameraScreen;

2. Run the App

npx react-native run-android
npx react-native run-ios
  • The app will now display live predictions on camera feed in real time.
See also  Day 8: Storing Data Securely and Implementing File Uploads

Step 3: Process Video Frames in Core ML

1. Integrate Vision Framework for Live Video

Open ViewController.swift:

import UIKit
import AVFoundation
import Vision

class ViewController: UIViewController, AVCaptureVideoDataOutputSampleBufferDelegate {
    var captureSession: AVCaptureSession!
    var videoPreviewLayer: AVCaptureVideoPreviewLayer!
    let model = try? VNCoreMLModel(for: YOLOv3Tiny().model)

    override func viewDidLoad() {
        super.viewDidLoad()
        setupCamera()
    }

    func setupCamera() {
        captureSession = AVCaptureSession()
        captureSession.sessionPreset = .high

        guard let videoCaptureDevice = AVCaptureDevice.default(for: .video) else { return }
        let videoInput = try? AVCaptureDeviceInput(device: videoCaptureDevice)
        if captureSession.canAddInput(videoInput!) {
            captureSession.addInput(videoInput!)
        }

        let videoOutput = AVCaptureVideoDataOutput()
        videoOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "videoQueue"))
        if captureSession.canAddOutput(videoOutput) {
            captureSession.addOutput(videoOutput)
        }

        videoPreviewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
        videoPreviewLayer.videoGravity = .resizeAspectFill
        videoPreviewLayer.frame = view.layer.bounds
        view.layer.addSublayer(videoPreviewLayer)

        captureSession.startRunning()
    }

    func captureOutput(
        _ output: AVCaptureOutput,
        didOutput sampleBuffer: CMSampleBuffer,
        from connection: AVCaptureConnection
    ) {
        guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
        guard let model = model else { return }

        let request = VNCoreMLRequest(model: model) { (request, error) in
            if let results = request.results as? [VNRecognizedObjectObservation] {
                DispatchQueue.main.async {
                    for result in results {
                        print("Object detected: \(result.labels.first?.identifier ?? "Unknown")")
                    }
                }
            }
        }

        let handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:])
        try? handler.perform([request])
    }
}

2. Run the App

  • Connect your iOS device or simulator.
  • The app will display real-time object detection logs in the Xcode console.

Step 4: Optimize for Performance

  1. Reduce Frame Processing Rate:
    • Limit the frames processed per second (FPS) to avoid performance bottlenecks.
  2. Use Accelerated Backends:
    • For TensorFlow.js, enable WebGL backend for faster computations: import * as tf from '@tensorflow/tfjs'; tf.setBackend('webgl');
  3. Batch Processing:
    • Process frames in batches for higher efficiency.
  4. Model Optimization:
    • Use quantized models (e.g., MobileNet or YOLO Tiny) for faster inference.

SEO Optimization for This Tutorial

Keywords: Real-time ML processing, TensorFlow.js live camera feed, Core ML video analysis, React Native real-time object detection, Vision Framework real-time ML.

Meta Description: Learn how to add real-time processing capabilities to your mobile app with TensorFlow.js and Core ML. Step-by-step tutorial with live camera integration and frame analysis.

See also  Day 8: Customizing and Training Your Own Machine Learning Model

Summary

Today, you added real-time processing capabilities to your app. By processing video frames in real time, you’ve created the foundation for live object detection, face recognition, or augmented reality features.

What’s Next: Tomorrow, you’ll explore sentiment analysis using pre-trained NLP models.

Stay tuned for Day 7: Running Sentiment Analysis on Text.


Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.